If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-40t+30=0
a = 5; b = -40; c = +30;
Δ = b2-4ac
Δ = -402-4·5·30
Δ = 1000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1000}=\sqrt{100*10}=\sqrt{100}*\sqrt{10}=10\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-10\sqrt{10}}{2*5}=\frac{40-10\sqrt{10}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+10\sqrt{10}}{2*5}=\frac{40+10\sqrt{10}}{10} $
| 5(x-21)=8 | | 7m+20=6 | | 3a+8=12 | | 2x(7x+5)=3(2x+7)+4(2x-1) | | (3x-6)-2=11 | | x/2-4=8-x | | {3x-6}-2=11 | | 1x+3=3x+-5 | | -4(3x-3)=60 | | 1-1.6x=0 | | C(n,4)=15 | | 5(3+2m)=35 | | 2(2k-4)=12 | | 6x*4-3=0 | | 1-1.6x^2=0 | | 4+1x=16-2x | | n(n-1)=45 | | |5-4x|=|2x-13| | | -4(4x+3)=4 | | 1,2x-(1,8x-3,8)=4,25 | | 72+x=-8x+9 | | /-72+x=-8x+9 | | Y=5/3x-4/5 | | 15x+10=-15-20 | | -7b-32=-3b | | 10*3d=73 | | 3*10d=73 | | 2(x+2)=3(x-1) | | 36x-22=40x-78 | | 3e-4e=-5 | | 0.12=x*0.19+(1-x)*0.08 | | y+8+3=16 |